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Nonholonomic Constraints

Nonholomic Constraints
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Nonholonomic Constraints

Definition
A Holonomic constraint is defined by an equation of the position variables Ψ(q) = 0.
Literally nonholonomic means not holonomic, however the common understanding
are relations between differentials

Φ(dq) = 0

which can not be integrated to position level. An obvious sufficient condition for
integrability of linear forms a(q) · dq = 0 is

∇a = ∇Ta.

This condition is not necessary, since several constraints may be non-integrable
separately, but are integrable taken together.
The Frobenius Theorem1 gives necessary and sufficient conditions for integrability.

1T. Hawkins: Frobenius, Cartan, and the problem of Pfaff (2005)
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Nonholonomic Constraints

Formulation

System without constraints are described by ODEs

q̇ = v

M(q)v̇ = f(q,v)

Holonomic constraints Ψ(q) = 0 lead to
an index-3-DAE

q̇ = v

M(q)v̇ = f(q,v) +

(
∂Ψ

∂q

)T

λ

Ψ(q) = 0

Nonholonomic constraints Adq = 0 lead
to an index-2-DAE

q̇ = v

M(q)v̇ = f(q,v) + ATλ

A(q)v = 0
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Nonholonomic Constraints
Time Discretization

Generic Schemes
Holonomic constraints enter the popular Gear-Gupta-Leimkuhler formulation2

(stabilized index 2) on both, position and velocity level

q̇ = v −GT(q)η

M(q)v̇ = f(q,v)−GT(q)λ−ATµ

Ψ(q) = 0

G(q)v = 0

A(q)v = 0

Nonholomic constraints are added on velocity level.
I ODE description of unconstrained systems is naturally extended to DAE

description when contraints are introduced.
I Nonholonomic constraints in mechanical systems lead to index-2-DAEs and are

thus even easier included into generic schemes than holonomic constraints.
2C. W. Gear, B. Leimkuhler, and G. K. Gupta: Automatic integration of Euler-Lagrange equations with

constraints (1985)
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Nonholonomic Constraints
Time Discretization

Structure Preservation

Structure-preserving integrators work very well for holonomic systems.
They preserve first integrals, such as energy and momentum, over long time.

Nonholonomic systems do not generally preserve a symplectic structure.
However, integrators derived from the Discrete D’Alembert Principle perform well on
some benchmark problems.
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Nonholonomic Constraints
Time Discretization

Structure Preservation

D’Alembert’s Principle (
d

dt

∂L

∂q̇
− ∂L

∂q̇

)
δq = 0

for holonomic systems means
I independent minimal coordinates δq exist,
I corresponds to stationarity of action functional (Hamilton),
I from stationarity of action follows symplecticity (Liouville).

for nonholonomic systems means
I δq are not independent,
I the velocity constraints are either enforced by Lagrange-Multipliers (Lagrange

Equations of first kind) or by elimination/quasicoordinates,
I anyway, symplecticity is lost.
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Nonholonomic Constraints
Time Discretization

Structure Preservation
The Discrete D’Alembert Principle is entirely vitiated by altered benchmarks3.
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Well, not entirely... one integrator does suprisingly well.
Leap-Frog still holds out against the altered benchmarks.

3K. Modin and O. Verdier: What makes nonholonomic integrators work? (2019)
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Nonholonomic Constraints
Time Discretization

Structure Preservation
Nonholonomic scleronomic constraints do not affect the energy conservation,
consequently energy-consistent schemes3 are appealing.
Energy conservation is ensured by the Discrete Gradient

∇̄f(qn,qn+1) · (qn+1 − qn) = f(qn+1)− f(qn).

A direct discretization of

M(q)q̈ = −∇V (q)−GT(q)λ−AT(q)µ

Ψ(q) = 0

A(q)q̇ = 0

is possible, but has two drawbacks, an increased number of unknowns
(Lagrange-Multipliers) and conditioning problems.

3P. Betsch: A Unified Approach to the Energy-Consistent Numerical Integration of Nonholonomic
Mechanical Systems and Flexible Multibody Dynamics (2004)
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Nonholonomic Constraints
Time Discretization

Structure Preservation

The discrete null space matrix P with the property

[G(qn,qn+1)T,A(qn+ 1
2
)T]P (qn,qn+1) = 0

projects the discretized equations of motions onto the admissible submanifold

PT

(
2

∆t
M (qn+1 − qn)− 2Mvn + ∆t∇̄V

)
= 0

Ψ(qn+1) = 0

A(qn+ 1
2
)(qn+1 − qn) = 0.

Note, the discrete gradient only ensures the conservation of total energy.
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Nonholonomic Constraints
Time Discretization

Nonholonomic Constraints in Simulations

I ODE description of unconstrained systems is naturally extended to DAE
description, when constraints enter.

I In generic schemes nonholonomic constraints are even easier to handle.
I Structure-preservation for nonholonomic systems is non-standard, only energy

conservation is evident.
I Symplecticity is lost, so symplectic integrators do not work well in general, but

on some benchmark problems.
I Leap-frog performs suprisingly well, demanding further research about the

geometric properties of nonholonomic systems.
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Nonholonomic Constraints
Optimal Control

Optimal Control Problem (feed-forward)
Definition of the Optimal Control Problem (OCP) with nonholonomic constraints

minu,q JC =

te∫
tb

C
(
q(t), q̇,u(t)

)
dt

s.t.:
[

q̇
q̈

]
= f

(
q(t), q̇(t),u(t)

)
A(q)q̇ = 0

q(tb) = q0, q(te) = qT

q̇(tb) = q̇0, q̇(te) = q̇T

g
(
q(t),u(t)

)
≥ 0 ∀t ∈ [tb, te].

Direct methods appear most promising3, so we limit the discussion to them.

3M. Gerdts: Optimal control of ODEs and DAEs (2011)
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Nonholonomic Constraints
Optimal Control

Direct Methods

Discretization of both, system dynamics and cost function, leads to a
finite-dimensional optimization problem

min Jd
C =

N−1∑
k=0

Cd(qk,qk+1,uk),

s.t.: q0 = qs, q̇0 = q̇s,

0 = fd(qk−1,qk,uk) for k = 1 . . . N − 1,

qN = qe, q̇N = q̇e,

where the nonholonomic constraints may be included into the system dynamics by the
discrete null space method, similarly as done for holonomic constraints by DMOCC4.

4S. Leyendecker, S. Ober-Blöbaum, J. E. Marsden, and M. Ortiz: Discrete mechanics and optimal control
for constrained systems
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Nonholonomic Constraints
Optimal Control

Direct Methods

Starting with an possibly infeasible guess [x, u], the functional-based approach4 goes
in 3 steps.

It has been implemented5 for holonomic constraints using variational integrators.
The extension to nonholonomic constraints is possible with the discrete null space
method as well.

4J. Hauser: A Projection Operator Approach to the Optimization of Trajectory Functionals (2000)
5E.R. Johnson and T.D.Murphey: Scalable variational integrators for constrained mechanical systems in

generalized coordinates (2009)
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Nonholonomic Constraints
Optimal Control

Nonholonomic Constraints in Optimal Control

Summary
I Direct methods appear more promising than indirect methods (not discussed).
I The discrete null space matrix offers an elegant way to satisfy both, holonomic

and nonholonomic, constraints within direct methods.
I Current research aims to identify and utilize further geometric properties of the

optimal control problem for nonholonomic systems.
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Unilateral Constraints

Unilateral Constraints
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Unilateral Constraints

Definition
In mechanical systems unilateral constraints arise from contacts6 via

impacts

mẍ = fg + fc,

0 ≤ x ⊥ fc ≥ 0,

ẋ+ = −εẋ− if x = 0 and ẋ− ≤ 0,

and friction

0 = fa − ff if ẋ = 0 and fa ≤ µ|N |,
mẍ = fa − µ|N |sgn ẋ else, with sgn 0 = [−1, 1].

As consequence, solutions may be non-differentiable or even discontinuous.

6V. Acary and B. Brogliato: Numerical methods for nonsmooth dynamical systems: applications in
mechanics and electronics (2008)
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Unilateral Constraints
Time Discretization

Categorization

smooth solution non-smooth event-driven non-smooth time-stepping
Event-driven offers higher accuracy, whereas time-stepping is more robust and and
can handle many collisions, even contemporaneously.

Formulation in terms of complementarity problems, variational inequalities or
differential inclusions depending on the favored numerical tools (LCP solvers, . . . ).

For completeness, regularizations may smooth out discontinuities, but lead to
artificially stiff systems.
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Unilateral Constraints
Time Discretization

Event-driven Schemes

A switching functions s(q, t) indicates discontinuities (s = 0) in the dynamic system

q̇ = f(q, λ, s),

0 = g(q, λ, s).

Event-detection corresponds to root finding7.
No sign change of s integration goes on.
Sign change detect event, i.e. solve

g(P q(t̂), λ̂) = 0

s(P q(t̂), λ̂) = 0

for t̂ and λ̂, and restart integration.

7L. F. Shampine and S. Thompson: Event location for ordinary differential equations (2000)
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Unilateral Constraints
Time Discretization

Event-driven Schemes
In the context of structure preservation, variational collision integrators7 can be
constructed from Hamilton’s principle, when the collision time ti is variable

δ

T∫
0

L
(
q, q̇) dt =

ti∫
0

(
∂L

∂q
− d

dt

∂L

∂q̇

)
· δq dt+

T∫
ti

(
∂L

∂q
− d

dt

∂L

∂q̇

)
· δq dt

−
∣∣∣∣∂L∂q̇ · δq + Lδt

∣∣∣∣t
+
i

t−i

.

However, variational inequalities are needed for a full description8.
The utilization of this modified principle is subject to current research.

7R. C. Fetecau, J. E. Marsden, M. Ortiz, and M. West: Nonsmooth Lagrangian mechanics and variational
collision integrators (2003)

8R. I. Leine, U. Aeberhard, and C. Glocker: Hamilton’s principle as variational inequality for mechanical
systems with impact (2009)
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Unilateral Constraints
Time Discretization

Time-stepping Schemes
Typically implicit schemes averaging all events over a time step h.

A simple discretization9 for a simple example (bouncing ball) starts with

xk+1 = xk + hẋk,

depending on the end position, the free flight continues (xk+1 > 0)

m(ẋk+1 − ẋk) = hfg,k+1,

or the contact is evaluated (xk+1 ≤ 0), here as LCP

m(ẋk+1 − ẋk) = hfg,k+1 + Fc,k+1

0 ≤ ẋk+1 + εẋk ⊥ Fc,k+1 ≥ 0.

9J.J. Moreau: Unilateral contact and dry friction in finite freedom dynamics (1988)
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Unilateral Constraints
Time Discretization

Time-stepping Schemes
In terms of structure preservation the use of variational integrators is evident, since
they are formulated in terms of momenta and avoid direct computation of forces.
Adding a non-smooth penalty term to the discrete action enforces hard inequality
constraints on the endpoints9

δk

N−1∑
k=0

(
Ld(qk, qk+1−IA(qk+1)

)
3 0.

Stationarity then gives us a constrained, Discrete Euler-Lagrange Inclusion

D2Ld(qk−1, qk) +D1Ld(qk, qk+1−∂IA(qk) 3 0,

qk+1 ∈ D.

9D. M. Kaufman and D. K. Pai. Geometric numerical integration of inequality constrained, nonsmooth
Hamiltonian systems (2012)
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Unilateral Constraints
Time Discretization

Unilateral Constraints in Simulation

Event-driven
− not too many events, can not handle infinite events in finite time (Zeno),
± structure preserving methods are on the way,
+ high order methods for smooth parts, highly efficient methods for root finding.

Time-stepping

− low order methods,
± events are only localized up to time step, constraints slightly violated,
+ robustness, structure preservation is available.
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Unilateral Constraints
Optimal Control

Optimal Control (feed-forward)

minJC
u(t), q(t)

=
te∫
tb

C
(
q(t), q̇(t), u(t)

)
dt cost functional

s.t.: q(tb) = qb, q̇(tb) = q̇b initial conditions

q(te) = qe, q̇(te) = q̇e terminal conditions[
q̇
q̈

]
= f

(
q(t), q̇(t), u(t)

)
, q ∈ D system dynamics

including collisions

r
(
q(t), u(t)

)
≥ 0 ∀t ∈ [tb, te] control constraints

Note, difference between compliance with unilateral constraints (KKT) and collisions
(re-init).
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Unilateral Constraints
Optimal Control

Event-driven Discretization of OCP

An event-driven disretization introduces the collision states and times as additional
variables. Consequently, there are three levels of optimization.

optimize smooth

trajectories

optimize event 

states and times

optimize event sequence

The computational efforts blow up and make this approach not seem very promising.
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Unilateral Constraints
Optimal Control

Time-stepping Discretization of OCP

Time-stepping discretizations, a.k.a. contact-implicit formulations10, avoid separate
handling of events.

minh,q,u,c J(h,q,u)+α

N−1∑
k=1

sk

s.t.: f(h, qk−1, qk, qk+1, λk, ψk, ηk) = 0

g(qk+1, λk, ψk, ηk, sk) ≥ 0

umin ≤ uk ≤ umax

hmin ≤ h ≤ hmax

However, method finds local minima, thus initial guess is decisive.

10Z. Manchester, N. Doshi, R. J Wood, and S. Kuindersma. Contact-implicit trajectory optimization using
variational integrators (2019)
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Unilateral Constraints
Optimal Control

Unilateral Constraints in Optimal Control

Utilization of collisions and structure switching are on the cutting edge of research.

The optimal control problem is more involved than the simulation, thus simple time
discretizations, i.e. time-stepping schemes, are preferred.
Moreover, the computational efforts for event-driven methods to solve the OCP grow
exponentially with higher dimensions and collision modes.

TUC · 28.08.2019 · Dominik Kern 22 / 23 https://www.tu-chemnitz.de/

https://www.tu-chemnitz.de/


Concluding Remarks

Summary
Nonholonomic constraints
I are easily included into the popular Gear-Gupta-Leimkuhler formulation;
I do not, in general, preserve a symplectic structure;
I suggest an energy-momentum conserving framework for long-term simulations

and optimal control problems.

Unilateral constraints
I lead to events that are either iteratively detected (event-driven schemes) or

averaged over a time step (time-stepping schemes);
I suggest a reformulation of the variational principles in terms of variational

inequalities;
I are favorable included via time-stepping schemes (contact-implicit) into the

optimal control problem.

Aggregation of holonomic, nonholonomic and unilateral constraints.
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Frobenius Theorem
For example, the constraints

(x2 + y2) dx+ xz dz = 0, ∇g1 =

 2x 2y x
0 0 0
z 0 x

 ,
(x2 + y2) dy + yz dz = 0, ∇g2 =

 0 0 0
2x 2y 0
0 z y


are not integrable separately, but together the can by integrated to

x2 + y2 + z2 = C1,
x

y
= C2.
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Frobenius Theorem

Rolling wheel11

Constraints:

π1 = ẋ1 +Rφ̇ cosψ +Rψ̇ cos θ cosψ −Rθ̇ sin θ sinψ

π2 = ẋ2 +Rφ̇ sinψ +Rψ̇ cos θ sinψ −Rθ̇ sin θ cosψ

π3 = ẋ3 −Rθ̇ cos θ

Coordinates:
U = [x1, x2, x3, φ, ψ, θ, t]

T

11O.M. O’Reilly: Intermediate Dynamics for Engineers (2008)
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Frobenius Theorem
differential constraint coefficients

W =

 1 0 0 R cosψ R cos θ cosψ −R sin θ sinψ 0
0 1 0 R sinψ R cos θ sinψ R sin θ cosψ 0
0 0 1 0 0 −R cos θ 0


null space of W

g1 = [0, 0, 0, 0, 0, 0, 1]T

g2 = [0,−R sin θ cos θ,R cos2 θ cosψ, 0, sin θ sinψ, cos θ cosψ, 0]T

g3 = [−R sin θ cos θ, 0,−R cos2 θ sinψ, 0, sin θ cosψ,− cos θ sinψ, 0]T

g4 = [R sin θ sinψ,−R sin θ cosψ,R cos θ, 0, 0, 1, 0]T

nonzero entries in SA
LK = WAL,K −WAK,L

S1
65 = −S1

56 = R sinψ  gT
2 S1g3 6= 0

S2
65 = −S2

56 = R cosψ  gT
2 S2g3 6= 0

TUC · 28.08.2019 · Dominik Kern 23 / 23 https://www.tu-chemnitz.de/

https://www.tu-chemnitz.de/


Frobenius Theorem
reduction to planar rolling x2 = 0 and ψ = 0

W =


1 0 0 R R cos θ 0 0
0 1 0 0 0 R sin θ 0
0 0 1 0 0 −R cos θ 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0


null space of W

g1 = [0, 0, 0, 0, 0, 0, 1]T

g2 = [−R, 0, 0, 1, 0, 0, 0]T

all gT
LSAgK = 0 for all L 6= K  system of constraints is integrable
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Experimental Validation

GAMM Student Chapter Chemnitz
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