

Vibrations of rotors partially filled with liquids in hydrodynamically lubricated journal bearings

Dominik Kern, Benedikt Wiegert, Michael Groß

Institute for Applied Mechanics and Dynamics

16th February 2017

TECHNISCHE UNIVERSITÄT CHEMNITZ

TU Chemnitz · 16.02.2017 · Dominik Kern

http://www.tu-chemnitz.de/

<ロ> <日> <日> <日> <日> <日> <日> <日</p>

Motivation

http://www.miele.de

washing machines

TU Chemnitz · 16.02.2017 · Dominik Kern

http://www.tu-chemnitz.de/

Motivation

TU Chemnitz · 16.02.2017 · Dominik Kern

http://www.tu-chemnitz.de/

Motivation

functional integration (lubrication, cooling) in electrical drives

TU Chemnitz · 16.02.2017 · Dominik Kern

http://www.tu-chemnitz.de/

▲ロト ▲園ト ▲ヨト ▲ヨト 三日 のへの

Literature

- General rotordynamics
 - Laval 1883
 - Gasch & Nordmann & Pfützner 2006
- Rotors in hydrodynamically lubricated journal bearings
 - Reynolds 1886
 - Sommerfeld 1955
 - Moser 1993
- Fluid filled rigid bodies
 - Stokes 1847
 - Kollmann 1962
 - Moiseyev & Rumyantsev 1968
 - Ibrahim 2005
 - Derendyaev & Vostrukhov & Soldatov 2006

Outline

- Modelling
 - rotor model
 - bearing model
 - liquid filling model
- Results
 - transient run-up simulation
 - bifurcation analysis of stationary solutions

Modelling
 Grundentrick
 F. Moser, Stabilität und Verzweigungsverhalten..., Dissertation TU Wien, 1993]

Bearing model

Rotor shaft in radial bearings

Reynolds' equation describes the pressure distribution in the lubrication film

$$\frac{1}{R_B^2}\frac{\partial}{\partial\varphi}\left(\frac{h^3}{\eta_B}\frac{\partial p}{\partial z}\right) + \frac{\partial}{\partial z}\left(\frac{h^3}{\eta_B}\frac{\partial p}{\partial z}\right) = 12\frac{\partial h}{\partial t} + 6\omega\frac{\partial h}{\partial\varphi}$$

Modelling
 [F. Moser, Stabilität und Verzweigungsverhalten..., Dissertation TU Wien, 1993]

Bearing model

Rotor shaft in radial bearings

nondimensionalization reveals simplification for short bearings

$$\bar{z} = \frac{2z}{B_B}, \qquad H = \frac{h}{C}, \qquad \tau = \omega t, \qquad \Pi = \frac{C^2}{R_B^2} \frac{p}{\eta_B \omega},$$
$$\frac{\partial}{\partial \varphi} \left(H^3 \frac{\partial \Pi}{\partial \bar{z}} \right) + \underbrace{\left(\frac{2R_B}{B_B}\right)^2}_{\gg 1} \frac{\partial}{\partial \bar{z}} \left(H^3 \frac{\partial \Pi}{\partial \bar{z}} \right) = 12 \frac{\partial H}{\partial \tau} + 6 \frac{\partial H}{\partial \varphi}$$

TU Chemnitz · 16.02.2017 · Dominik Kern

http://www.tu-chemnitz.de/

Hodelling (F. Moser, Stabilität und Verzweigungsverhalten..., Dissertation TU Wien, 1993)

Bearing model

$$F_{Bx}(e_B, e'_B, \gamma, \gamma') = -R_B \int_{-B_B/2}^{B_B/2} \int_{\Phi_1}^{\Phi_2} p(\Phi, z, e_B, e'_B, \gamma, \gamma') \cos \Phi \, \mathrm{d}\Phi \mathrm{d}z,$$

$$F_{By}(e_B, e'_B, \gamma, \gamma') = -R_B \int_{-B_B/2}^{B_B/2} \int_{\Phi_1}^{\Phi_2} p(\Phi, z, e_B, e'_B, \gamma, \gamma') \sin \Phi \, \mathrm{d}\Phi \mathrm{d}z.$$

Liquid filling

Liquid model and its reduction to a rigid body

friction force between rotor ("disk") and liquid ("ring")

$$\mathbf{f}_{\eta} = -\xi(\mathbf{v}_R - \mathbf{v}_D) - \zeta \mathbf{e}_z \times (\mathbf{v}_R - \mathbf{v}_D).$$

integrated along contact line of length $L = 2\pi R_R$ contributes to resulting force

$$\begin{split} F_{Fx} &= -k_R(x_R - x_D) - \xi L \big((\dot{x}_R - \dot{x}_D) + (y_R - y_D) \dot{\varphi}_D \big) \\ &+ \zeta L \big((\dot{y}_R - \dot{y}_D) - (x_R - x_D) \dot{\varphi}_D \big) \\ F_{Fy} &= -k_R(y_R - y_D) - \xi L \big((\dot{y}_R - \dot{y}_D) - (x_R - x_D) \dot{\varphi}_D \big) \\ &- \zeta L \big((\dot{x}_R - \dot{x}_D) + (y_R - y_D) \dot{\varphi}_D \big) \end{split}$$

[N.V. Derendyaev et al., Stability and Andronov-Hopf-Bifurcation..., Transactions of ASME, 2006]

stability limit for a balanced, rigid rotor partially filled with liquid in isotropic, linear visco-elastic bearings and without external force fields

[N.V. Derendyaev et al., Stability and Andronov-Hopf-Bifurcation..., Transactions of ASME, 2006]

visco-elastic bearings and without external force fields

[N.V. Derendyaev et al., Stability and Andronov-Hopf-Bifurcation..., Transactions of ASME, 2006]

stability limit for a balanced, rigid rotor partially filled with liquid in isotropic, linear visco-elastic bearings and without external force fields

Modelling [N.V. Derendyaev et al., Stability and Andronov-Hopf-Bifurcation..., Transactions of ASME, 2006]

Limitations of the reduced model

the discrete model approximates the continuous model under the assumptions of

- a ring-shaped distribution of the liquid in the rotor, i.e. the rotational speed must be sufficiently high and be reached without prior instabilities
- only the slow wave mode is approximated accurately, i.e. the accelerations must be slowly enough not to excite higher wave modes

for prescribed rotational speed $\dot{\varphi}_D(t)$ translational and rotational motion decouple

$$\begin{aligned} \mathbf{M}\ddot{\mathbf{x}} + (\mathbf{D} + \mathbf{G})\dot{\mathbf{x}} + (\mathbf{K} + \mathbf{Z})\mathbf{x} &= \mathbf{f}(t, \mathbf{x}, \dot{\mathbf{x}}) \\ J_R \ddot{\varphi}_R + \xi L R_R^2 \dot{\varphi}_R &= \xi L R_R^2 \dot{\varphi}_D(t) \end{aligned}$$

$$\mathbf{M} = \begin{bmatrix} m_B & 0 & 0 & 0 & 0 & 0 \\ 0 & m_B & 0 & 0 & 0 & 0 \\ 0 & 0 & m_D & 0 & 0 & 0 \\ 0 & 0 & 0 & m_D & 0 & 0 \\ 0 & 0 & 0 & 0 & m_R & 0 \\ 0 & 0 & 0 & 0 & 0 & m_R \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへの

for prescribed rotational speed $\dot{\varphi}_D(t)$ translational and rotational motion decouple

$$\begin{aligned} \mathbf{M}\ddot{\mathbf{x}} + (\mathbf{D} + \mathbf{G})\dot{\mathbf{x}} + (\mathbf{K} + \mathbf{Z})\mathbf{x} &= \mathbf{f}(t, \mathbf{x}, \dot{\mathbf{x}}) \\ J_R \ddot{\varphi}_R + \xi L R_R^2 \dot{\varphi}_R &= \xi L R_R^2 \dot{\varphi}_D(t) \end{aligned}$$

TU Chemnitz · 16.02.2017 · Dominik Kern

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□

for prescribed rotational speed $\dot{\varphi}_D(t)$ translational and rotational motion decouple

$$\begin{aligned} \mathbf{M}\ddot{\mathbf{x}} + (\mathbf{D} + \mathbf{G})\dot{\mathbf{x}} + (\mathbf{K} + \mathbf{Z})\mathbf{x} &= \mathbf{f}(t, \mathbf{x}, \dot{\mathbf{x}}) \\ J_R \ddot{\varphi}_R + \xi L R_R^2 \dot{\varphi}_R &= \xi L R_R^2 \dot{\varphi}_D(t) \end{aligned}$$

TU Chemnitz · 16.02.2017 · Dominik Kern

for prescribed rotational speed $\dot{\varphi}_D(t)$ translational and rotational motion decouple

$$\begin{aligned} \mathbf{M}\ddot{\mathbf{x}} + (\mathbf{D} + \mathbf{G})\dot{\mathbf{x}} + (\mathbf{K} + \mathbf{Z})\mathbf{x} &= \mathbf{f}(t, \mathbf{x}, \dot{\mathbf{x}}) \\ J_R \ddot{\varphi}_R + \xi L R_R^2 \dot{\varphi}_R &= \xi L R_R^2 \dot{\varphi}_D(t) \end{aligned}$$

$$\mathbf{K} = \begin{bmatrix} k_D & 0 & -k_D & 0 & 0 & 0\\ 0 & k_D & 0 & -k_D & 0 & 0\\ -k_D & 0 & k_D + \tilde{k} & 0 & -\tilde{k} & 0\\ 0 & -k_D & 0 & k_D + \tilde{k} & 0 & -\tilde{k}\\ 0 & 0 & -\tilde{k} & 0 & \tilde{k} & 0\\ 0 & 0 & 0 & -\tilde{k} & 0 & \tilde{k} \end{bmatrix}$$

with $\tilde{k} = k_R + \zeta L \dot{\varphi}_D$

for prescribed rotational speed $\dot{\varphi}_D(t)$ translational and rotational motion decouple

$$\begin{aligned} \mathbf{M}\ddot{\mathbf{x}} + (\mathbf{D} + \mathbf{G})\dot{\mathbf{x}} + (\mathbf{K} + \mathbf{Z})\mathbf{x} &= \mathbf{f}(t, \mathbf{x}, \dot{\mathbf{x}}) \\ J_R \ddot{\varphi}_R + \xi L R_R^2 \dot{\varphi}_R &= \xi L R_R^2 \dot{\varphi}_D(t) \end{aligned}$$

TU Chemnitz · 16.02.2017 · Dominik Kern

http://www.tu-chemnitz.de/

for prescribed rotational speed $\dot{\varphi}_D(t)$ translational and rotational motion decouple

$$\begin{aligned} \mathbf{M}\ddot{\mathbf{x}} + (\mathbf{D} + \mathbf{G})\dot{\mathbf{x}} + (\mathbf{K} + \mathbf{Z})\mathbf{x} &= \mathbf{f}(t, \mathbf{x}, \dot{\mathbf{x}}) \\ J_R \ddot{\varphi}_R + \xi L R_R^2 \dot{\varphi}_R &= \xi L R_R^2 \dot{\varphi}_D(t) \end{aligned}$$

$$\mathbf{f} = \begin{bmatrix} F_{Bx}(x_B, \dot{x}_B, y_B, \dot{y}_B) + m_B g \\ F_{By}(x_B, \dot{x}_B, y_B, \dot{y}_B) \\ m_D e_D(\dot{\varphi}_D^2 \cos \varphi_D + \ddot{\varphi}_D \sin \varphi_D) + m_D g \\ m_D e_D(\dot{\varphi}_D^2 \sin \varphi_D - \ddot{\varphi}_D \cos \varphi_D) \\ m_R g \\ 0 \end{bmatrix}$$

TU Chemnitz · 16.02.2017 · Dominik Kern

displacement of rotor disk for empty rotor (dotted line), filled rotor (solid line) and equivalent-mass rotor (dashed line)

Results

Run-up simulation $\dot{\varphi}_D(t) = \omega_s + \alpha t$

displacement of rotor shaft in bearings for empty rotor (dotted line), filled rotor (solid line) and equivalent-mass rotor (dashed line)

Run-up simulation $\dot{\varphi}_D(t) = \omega_s + \alpha t$

trajectories of the rotor disk for empty rotor (dotted line), filled rotor (solid line) and equivalent-mass rotor (dashed line)

Nondimensionalization

coordinates	$\bar{x}_i = rac{x_i}{C}$, $\bar{y}_i = rac{y_i}{C}$	i = B, D, (R)
time	$\tau = \omega t$	$\omega = \dot{\varphi}_D = {\sf constant}$
angular frequency	$\bar{\omega} = \omega \sqrt{C/g}$	
masses	$\bar{m}_i = \frac{m_i}{m}$	i=B,D,(R)
damping/friction	$\bar{d}_i = \frac{d_i}{m} \sqrt{\frac{C}{g}}$	$i=a,\xi,\zeta$
stiffnesses	$\bar{k}_i = \frac{C}{mg} k_i$	i = D, (R)
imbalance	$\rho = \frac{e_D}{C}$	
reciprocal load parameter	$\sigma = \frac{1}{2} \frac{R_B B_B^3 \eta_B}{C^2 m \sqrt{Cg}}$	$S_m = \sigma \bar{\omega}$
moment of inertia	$\bar{J}_R = \frac{J_R}{mR_RC}$	
rotational damping	$\bar{d}_R = \frac{\xi L R_R}{m\sqrt{Cg}}$	

$$\bar{\mathbf{M}}\bar{\omega}^{2}\bar{\mathbf{x}}'' + (\bar{\mathbf{D}} + \bar{\mathbf{G}})\bar{\omega}\bar{\mathbf{x}}' + (\bar{\mathbf{K}}_{0} + \bar{\mathbf{K}}_{1}\bar{\omega})\bar{\mathbf{x}} = \bar{\mathbf{f}}(\tau, \bar{\mathbf{x}}, \bar{\mathbf{x}}') \bar{J}_{R}\bar{\omega}^{2}\bar{\varphi}_{R}'' + \bar{d}_{R}\bar{\omega}\bar{\varphi}_{R}' = \bar{d}_{R}\bar{\omega}$$

$$\mathbf{M} = \begin{bmatrix} \bar{m}_B & 0 & 0 & 0 & 0 & 0 \\ 0 & \bar{m}_B & 0 & 0 & 0 & 0 \\ 0 & 0 & \bar{m}_D & 0 & 0 & 0 \\ 0 & 0 & 0 & \bar{m}_D & 0 & 0 \\ 0 & 0 & 0 & 0 & \bar{m}_R & 0 \\ 0 & 0 & 0 & 0 & 0 & \bar{m}_R \end{bmatrix}$$

TU Chemnitz · 16.02.2017 · Dominik Kern

http://www.tu-chemnitz.de/

$$\bar{\mathbf{M}}\bar{\omega}^{2}\bar{\mathbf{x}}'' + (\bar{\mathbf{D}} + \bar{\mathbf{G}})\bar{\omega}\bar{\mathbf{x}}' + (\bar{\mathbf{K}}_{0} + \bar{\mathbf{K}}_{1}\bar{\omega})\bar{\mathbf{x}} = \bar{\mathbf{f}}(\tau, \bar{\mathbf{x}}, \bar{\mathbf{x}}') \bar{J}_{R}\bar{\omega}^{2}\bar{\varphi}_{R}'' + \bar{d}_{R}\bar{\omega}\bar{\varphi}_{R}' = \bar{d}_{R}\bar{\omega}$$

TU Chemnitz · 16.02.2017 · Dominik Kern

http://www.tu-chemnitz.de/

$$\bar{\mathbf{M}}\bar{\omega}^{2}\bar{\mathbf{x}}'' + (\bar{\mathbf{D}} + \bar{\mathbf{G}})\bar{\omega}\bar{\mathbf{x}}' + (\bar{\mathbf{K}}_{0} + \bar{\mathbf{K}}_{1}\bar{\omega})\bar{\mathbf{x}} = \bar{\mathbf{f}}(\tau, \bar{\mathbf{x}}, \bar{\mathbf{x}}') \bar{J}_{R}\bar{\omega}^{2}\bar{\varphi}_{R}'' + \bar{d}_{R}\bar{\omega}\bar{\varphi}_{R}' = \bar{d}_{R}\bar{\omega}$$

TU Chemnitz · 16.02.2017 · Dominik Kern

http://www.tu-chemnitz.de/

$$\bar{\mathbf{M}}\bar{\omega}^{2}\bar{\mathbf{x}}^{\prime\prime} + (\bar{\mathbf{D}} + \bar{\mathbf{G}})\bar{\omega}\bar{\mathbf{x}}^{\prime} + (\bar{\mathbf{K}}_{0} + \bar{\mathbf{K}}_{1}\bar{\omega})\bar{\mathbf{x}} = \bar{\mathbf{f}}(\tau, \bar{\mathbf{x}}, \bar{\mathbf{x}}^{\prime}) \bar{J}_{R}\bar{\omega}^{2}\bar{\varphi}_{R}^{\prime\prime} + \bar{d}_{R}\bar{\omega}\bar{\varphi}_{R}^{\prime} = \bar{d}_{R}\bar{\omega}$$

$$\bar{\mathbf{K}}_{0} = \begin{bmatrix} \bar{k}_{D} & 0 & -\bar{k}_{D} & 0 & 0 & 0\\ 0 & \bar{k}_{D} & 0 & -\bar{k}_{D} & 0 & 0\\ -\bar{k}_{D} & 0 & \bar{k}_{D} + \bar{k}_{R} & 0 & -\bar{k}_{R} & 0\\ 0 & -\bar{k}_{D} & 0 & \bar{k}_{D} + \bar{k}_{R} & 0 & -\bar{k}_{R}\\ 0 & 0 & -\bar{k}_{R} & 0 & \bar{k}_{R} & 0\\ 0 & 0 & 0 & -\bar{k}_{R} & 0 & \bar{k}_{R} \end{bmatrix}$$

TU Chemnitz · 16.02.2017 · Dominik Kern

http://www.tu-chemnitz.de/

$$\bar{\mathbf{M}}\bar{\omega}^{2}\bar{\mathbf{x}}'' + (\bar{\mathbf{D}} + \bar{\mathbf{G}})\bar{\omega}\bar{\mathbf{x}}' + (\bar{\mathbf{K}}_{0} + \bar{\mathbf{K}}_{1}\bar{\omega})\bar{\mathbf{x}} = \bar{\mathbf{f}}(\tau, \bar{\mathbf{x}}, \bar{\mathbf{x}}') \bar{J}_{R}\bar{\omega}^{2}\bar{\varphi}_{R}'' + \bar{d}_{R}\bar{\omega}\bar{\varphi}_{R}' = \bar{d}_{R}\bar{\omega}$$

TU Chemnitz · 16.02.2017 · Dominik Kern

http://www.tu-chemnitz.de/

$$\bar{\mathbf{M}}\bar{\omega}^{2}\bar{\mathbf{x}}'' + (\bar{\mathbf{D}} + \bar{\mathbf{G}})\bar{\omega}\bar{\mathbf{x}}' + (\bar{\mathbf{K}}_{0} + \bar{\mathbf{K}}_{1}\bar{\omega})\bar{\mathbf{x}} = \bar{\mathbf{f}}(\tau, \bar{\mathbf{x}}, \bar{\mathbf{x}}') \bar{J}_{R}\bar{\omega}^{2}\bar{\varphi}_{R}'' + \bar{d}_{R}\bar{\omega}\bar{\varphi}_{R}' = \bar{d}_{R}\bar{\omega}$$

$$\mathbf{f} = \begin{bmatrix} S_m f_x(\bar{x}_B, \bar{x}'_B, \bar{y}_B, \bar{y}'_B) + \bar{m}_B \\ S_m f_y(\bar{x}_B, \bar{x}'_B, \bar{y}_B, \bar{y}'_B) \\ \bar{m}_D \rho \bar{\omega}^2 \cos \tau + \bar{m}_D \\ \bar{m}_D \rho \bar{\omega}^2 \sin \tau \\ \bar{m}_R \\ 0 \end{bmatrix}$$

TU Chemnitz · 16.02.2017 · Dominik Kern

Bifurcation analysis

dimensionless rotor angular velocity versus dimensionless rotor disk position for empty rotor (dotted line), filled rotor (solid line) and equivalent-mass rotor (dashed line)

Image: A math a math

1 = 990

Bifurcation analysis

path of the first bifurcation point in dependence on dimensionless angular velocity and dimensionless reciprocal load parameter for empty rotor (dotted line), filled rotor (solid line) and equivalent-mass rotor (dashed line)

三日 のへの

Summary

- liquid filled rotors in hydrodynamically lubricated journal bearings have been reduced to a minimal model with 6-DoF (prescribed rotational speed) which is well suited for repeated evaluations and inclusion in further studies
- the liquid filling has a major influence on the rotor dynamics, so far only destabilizing effects have been observed

Outlook

- verify the results by comparison with reference results from the literature
- develop model order reduction of the liquid ("continuous model") to the rigid body ("discrete model") into functional expressions
- investigate influence of all parameters (11 groups)
- search for synchronization and stabilization effects

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

parameter values

- R_B 3e-3 m
- B_B 3e-3 m
- C 1e-5 m
- η_B 10e-3 Pa s
- m_B 1e-3 kg
- m_D 99e-3 kg
- *e*_D **1e-6 m**
- *k*_D 2e6 N/m
- d_a 1e1 Ns/m
- g 9.81 m/s²

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □□ の ○ ○

parameter values

- m_R 75.4e-3 kg
- J_R 6e-8 kg m²
- *R_R* 2.8e-3 m
- k_R 1.26e7 N/m
- *ξL* 18.8 Ns/m
- *ζL* -2.33e3 Ns/m
- m_F 150e-3 kg
- u_F 1e-6 m²/s
- δ 0.9

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □□ の ○ ○

parameter values

\bar{m}_B	5.7e-3	10e-3
\bar{m}_D	5.6e-1	9.9e-1
ρ	0.1	
\bar{k}_D	11.62	20.39
σ	2.33	4.09
\bar{d}_a	57.5e-3	101e-3
\bar{m}_R	430e-3	
\bar{J}_R	12.47	
\bar{k}_R	7.3e1	
\bar{d}_{ξ}	0.108	
\bar{d}_{ζ}	-13.42	
\bar{d}_R	29.9	