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There are two basic categories for numerical integration of nonsmooth dynamical
systems: event-driven and time-stepping. Since MATLAB offers a nice tutorial for
an event-driven simulation of a bouncing ball, we deliver the missing part, a time-
stepping scheme for the same model in accordance with the K.I.S.S. principle. This
scheme turns out robust and withstands Zeno’s paradox.

1 Introduction

Nonsmooth systems are characterized by two correlated features, a nonsmooth evolution with
respect to time and a set of nonsmooth laws constraining the state. These systems are frequently
used to model contacts in mechanics, i.e. impact and friction. Their numerical simulation is
divided into two basic categories: event-driven and time-stepping. The former is more precise
and enables higher order methods, but it is limited to few events; whereas the latter is more
robust and allows for many events.

Event-driven schemes are simply structured (not claiming their efficient implementation is
easy). Events are detected by the root finding of a switching function and then the integration
is restarted. MATLAB contains a nice tutorial for the event-driven simulation of a bouncing
ball, just type doc ballode.

Time-stepping schemes are sort of more complex, as they handle the discrete-time events in
an integral sense, i.e. the integrator marches through time and does not care, when exactly
the events happen. Of course there are many excellent textbooks [1, 2], but to gather the
implementation from the sophisticated mathematical notation (differential inclusions, variational
inequalities) may still pose problems. So let’s get started with the simple example of a ball.

2 Model Description

The ball is subject to a continuous-time force f , which may represent gravity and external
forcing and the potential reaction force λ of the ground. It is moving in a one-dimensional
domain bounded below by the ground. Mathematically its dynamics are governed by

mÿ(t) = f(t) + λ(t), (1a)

y(0) = y0 ≥ 0, (1b)

ẏ(0−) = ẏ0, (1c)

0 ≤ y(t) ⊥ λ(t) ≥ 0, (1d)

ẏ(t+) = −εẏ(t−), if y(t) = 0 and ẏ(t−) < 0. (1e)
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The equation of motion (1a) is nothing else than Newton’s law, the initial conditions (1b)-(1c)
comply with the unilateral constraint y ≥ 0. The mysterious symbol ⊥ in the complementarity
condition (1d) states that either the contact is closed y = 0 or the contact force is inactive λ = 0,
in addition this line tells us that height and contact force are bound to nonnegative values y ≥ 0
and λ ≥ 0, respectively. The impact law (1e) characterizes the contact by the coefficient of
restitution as perfectly elastic ε = 1, inelastic ε = 0 or some real-world value in between1.

The system of equations and inequalities (1) allows two contact regimes: the impact of
zero-duration (bounce back) and resting on the ground (static equilibrium).

3 Time Discretization

We present a Moreau time-stepping scheme [4] deprived of tuning parameters. Since the
problem is one-dimensional, we do not care about any tangent or normal cones, there is only
one direction. Assuming yk > 0, we start with an Euler-forward step for the position

yk+1 = yk + hẏk, (2)

where h > 0 denotes the time step. If the ball remains in free flight yk+1 > 0, then we make an
Euler-backward step for the velocity

m(ẏk+1 − ẏk) = hfk+1, (3a)

λk+1 = 0, (3b)

while there is no contact. Note that time-stepping schemes deal rather with impulses than with
forces, meaning the integral of a force over a time step is relevant and not its time-profile.

If yk+1 ≤ 0 indicates a contact, then we have to solve the linear complementarity system

m(ẏk+1 − ẏk) = hfk+1 + hλk+1, (4a)

0 ≤ ẏk+1 + εẏk ⊥ hλk+1 ≥ 0. (4b)

There exist powerful LCP-solvers [3] to solve for velocity ẏk+1 and contact impulse hλk+1.
However, this LCP we can resolve by hand. From equation (4a) we find the limit condition
for contact hλk+1 = 0, i.e. opening or closing. If the external force f is strong enough to
fulfill a velocity change as the impact law (1e) dictates −m(1 + ε)ẏk = hfk+1, or even more
−m(1 + ε)ẏk < hfk+1, then the contact is inactive and the ball moves as in free flight. This is
a consequence of the restriction λ ≥ 0, that the ground can not pull. Otherwise the impact law
needs support from the contact force hλk+1 = −m(1 + ε)ẏk − hfk+1.

Finally, here comes the source code, providing all parameter values, and the corresponding
plots.

Figure 1 shows a ball subjected to gravitation, which is dropped from a certain height and
comes to rest in finite time via an infinite number of bounces. The integrator passes this
accumulation point, close to t = 6 s, and enters a state of rest, in which the contact force is in
equilibrium with the weight.

Figure 2 shows position and contact force of a ball which is subjected to an increasing external
force in addition to gravity. The complementary nature of contact gap and force is evident.

1We peacefully ignore explosive contact and full penetration.
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Listing 1: simulation of a bouncing ball (MATLAB)

% Implementation o f a time−s t e pp ing scheme [ Moreau1988 ]
% fo r a bouncing b a l l (1D) , ground modeled by u n i l a t e r a l c on s t r a i n t
% y>=0 and c o e f f i c i e n t o f r e s t i t u t i o n dyd t p l u s=−rc ∗ dydt minus
clear ; clc ; close a l l ;

N=1000; h=0.01; T=N∗h ; t =0:h :T; % time d i s c r e t i z a t i o n
rc =0.9 ; % c o e f f i c i e n t o f r e s t i t u t i o n
m=1; g=10; % mass and g r a v i t a t i o n a l a c c e l e r a t i o n
y=zeros (N+1 ,1) ; v=zeros (N+1 ,1) ; % po s i t i o n and v e l o c i t y arrays
R=zeros (N, 1 ) ; % reac t i on impulse , va lue at t=0 depends on pas t
F=zeros (N, 1 ) ; % ex t e rna l impulse , va lue at t=0 does not en ter

% i . c . and f o r c i n g f o r bouncing −−> r e s t ” con tac t c l o s i n g ” ( f i g . 1 )
q0 =0.5; v0=0; % i n i t i a l c ond i t i on s
f=@( t ) −m∗g ; % ex t e rna l f o r c e ( continuous−t ime )
% a sum of a geometr ic s e r i e s g e t s a p h y s i c a l meaning
zeno t ime=sqrt (8∗ q0/g)/(1− rc )−sqrt (2∗ q0/g ) ; %assuming v0=0

% i . c . and f o r c i n g f o r r e s t i n g −−> f l i g h t ” con tac t opening” ( f i g . 2 )
%q0=0.0; v0=0; % i n i t i a l c ond i t i on s
%f=@( t ) (−1.2∗ s in ( t ∗2∗ p i /T)−1)∗m∗g ; % ex t e rna l f o r c e ( cont .− t ime )

y(1)=q0 ; v(1)=v0 ;
for n=1:N

% Euler−forward f o r p o s i t i o n
y (n+1)=y (n)+v (n)∗h ;

% Euler−backward f o r v e l o c i t y
F(n)=h∗ f ( t (n+1)) ;% in t e g r a t e d f o r c e at t=t (n+1)
v (n+1)=v (n)+F(n)/m; % f r e e f l i g h t , o the rw i s e ove rwr i t t en by LCP

% LCP fo r contact , manually r e s o l v e d
i f ( y (n+1)<=0) % prevent pene t ra t i on

dv=−(1+rc )∗v (n ) ; % ( p o t e n t i a l ) v e l o c i t y jump
i f (m∗dv)>F(n) % ground can only push , but not p u l l

v (n+1)=v (n)+dv ; % impact law
R(n)=m∗dv−F(n ) ; % reac t i on f o r c e from eq . o f motion

end % e l s e noth ing to do
end % e l s e noth ing to do

end

figure ;
yyax i s l e f t ; plot ( t , y , [ zeno time , zeno t ime ] , [ −0 . 1 , 0 . 6 ] , ’ k−− ’ ) ;
xlabel ( ’ time [ s ] ’ ) ; ylabel ( ’ p o s i t i o n [m] ’ ) ; yl im ([−0.1 0 . 6 ] )
yyax i s r i g h t ; plot ( t ( 2 :end ) , R) ; % R at t=0 i s not determined
ylabel ( ’ r e a c t i o n impulse [ Ns ] ’ ) ; yl im ([−1 6 ] ) ;
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Figure 1: Position y (blue) and contact impulse hλ (red) of the landing.
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Figure 2: The take-off is due to an additional force opposed to gravitation (y, hλ).

References

[1] Vincent Acary and Bernard Brogliato. Numerical methods for nonsmooth dynamical systems:
applications in mechanics and electronics. Springer Science & Business Media, 2008. doi:

10.1007/978-3-540-75392-6.

[2] Bernard Brogliato. Nonsmooth mechanics – Models, Dynamics and Control. Springer, 1999.
doi:10.1007/978-1-4471-0557-2.

[3] R.W. Cottle, J.S. Pang, and R.E. Stone. The linear complementarity problem. 1992. Aca-
demic Press, New York, 1992. doi:10.1137/1.9780898719000.

[4] Jean J. Moreau. Unilateral contact and dry friction in finite freedom dynamics. In
Nonsmooth mechanics and Applications, pages 1–82. Springer, 1988. doi:10.1007/

978-3-7091-2624-0_1.

Published under the CC-BY 4.0 License.

4

https://doi.org/10.1007/978-3-540-75392-6
https://doi.org/10.1007/978-3-540-75392-6
https://doi.org/10.1007/978-1-4471-0557-2
https://doi.org/10.1137/1.9780898719000
https://doi.org/10.1007/978-3-7091-2624-0_1
https://doi.org/10.1007/978-3-7091-2624-0_1
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Model Description
	Time Discretization

