
Automation of COMSOL Multiphysics

Parameter Studies using the

MATLAB LiveLink

Dominik Kerna, Nils-Henning Framkeb

September 26, 2012

Abstract

COMSOL Multiphysics is a Finite Element Methods (FEM) software package for the

numerical solution of partial differential equations. The MATLAB LiveLink combines

the powerful FEM abilities of COMSOL with the versatile programming environment of

MATLAB. This tutorial shows how to utilize the LiveLink for the frequent application

of a parameter study. The FE analysis is invoked for several parameters by a M-File

and its results are post-processed in MATLAB. As demonstration example serves the

verification model large deformation beam from the model library. It is modified such that

its geometry is parameterized. It can then be solved and post-processed automatically for

several parameter combinations by a M-File.

This tutorial refers to versions: COMSOL 4.2a and MATLAB 2011b.

Contents

Building the model in COMSOL GUI 2

Running the COMSOL model from MATLAB via LiveLink 3

Prepare the COMSOL model M-File for a parameter study 3

Accessing and Postprocessing the COMSOL results in MATLAB 4

Example source code . 7

Some remarks about export to SimuLink . 8

References 8

akern@kit.edu
bnframke@online.de

Building the model in COMSOL GUI

The model can be opened from the model library structural mechanics – verification models

– large deformation beam. It contains a cantilever beam that is clamped on the left end and

highly deformed by forces on the right end. In order to perform a geometrically nonlinear

Figure 1: large deformation beam from model library – structural mechanics – verification mod-
els

deformation analysis for several lengths and the corresponding evaluations of the end point

path we need a parametrized geometry.

We will now prepare the parameterized model using the COMSOL GUI.

1. Start COMSOL and open the model library. Select the large deformation beam from

structural mechanics – verification models.

2. In the Model Builder tree goto Parameters in the Global Definitions node and enter the

parameters W, H, T shown in Figure 2.

Figure 2: Load and geometry parameters of the beam

3. From the Model node select the Geometry node and locate the Rectangle entry. Overwrite

the Width and Height values of the rectangle definition with the corresponding global

parameters W and H, respectively.

4. From the Model node select the Solid Mechanics node and overwrite the thickness from

the Thickness section with the corresponding global parameter T.

5. Rebuild and remesh the geometry and compute the study to check if geometry, mesh and

study are built/computed correctly.

2

6. From the Model node select the Results node. Select Cut Point 2D 1 from Data Sets and

set the x-coordinate of the Cut Point to W and the y-coordinate to T/2.

7. From File select Reset History.

8. From File select Save As Model M-File... and save. The M-File with the COMSOL model

will be beamModel.m for this tutorial.

By default COMSOL will save any changes you have made during the modeling process

to the MATLAB M-File. Therefore the resulting M-File might be large and full of redun-

dant information. Deleting the modeling history with File – Reset History will reduce the

M-File-Code to what you actually see in the Model Builder tree at the time of saving the model.

Running the COMSOL model from MATLAB via LiveLink

Start the COMSOL – MATLAB LiveLink (Windows: COMSOL with MATLAB, Linux: comsol

server matlab, alternatively using mphstart.m in the COMSOL installation directory) and

check that it is set up correctly (test with autocomplete mph<TAB> if COMSOL commands,

such as mphplot, mpheval, ... are available).

Next we will modify the saved Model M-File from COMSOL. After that we will create a new

M-file which invokes the COMSOL model for different parameters and access the results for

postprocessing.

Prepare the COMSOL model M-File for a parameter study

1. By default COMSOL is building a MATLAB function from your model if you save to a

M-File in COMSOL. In the first line of the M-File you find:

function out = model

Replace model by the name of the M-File (beamModel in this tutorial)

function out = beamModel

2. Add input variables for the width W , height H and thickness T of the beam to the

MATLAB function

function out = beamModel(W,H,T)

3. Use these input variables in the COMSOL model (beamModel.m).

a) Locate the section in the COMSOL model M-File where the global parameters are

set. It looks like:

3

model.param.set('F_Lx', ' -3.844[MN]', 'Maximum␣

compressive␣load');

model.param.set('F_Ly', '1e-3* F_Lx', 'Transverse␣load');

model.param.set('NCL', '0', 'Normalized␣compressive␣load'

);

model.param.set('W', '3.2␣[m]', 'Width␣of␣the␣beam');

model.param.set('H', '0.15␣[m]', 'Heigth␣of␣the␣beam');

model.param.set('T', '0.1[m]', 'Thickness␣of␣the␣beam');

b) For the parameter study it is more convenient to use numerical input for the MAT-

LAB model function. Use num2str to bulid the required strings for width W , height

H and thickness T . So the modified section should then look like:

% 'F_Lx ', 'F_Ly ', 'NCL ' remain unchanged in this tutorial

model.param.set('W', [num2str(W), '␣[m]'], 'Width␣of␣the␣

beam');

model.param.set('H', [num2str(H), '␣[m]'], 'Heigth␣of␣the

␣beam');

model.param.set('T', [num2str(T), '␣[m]'], 'Thickness␣of␣

the␣beam');

4. Call the MATLAB function beamModel.m building and solving the COMSOL model from

the MATLAB Command Line with the desired parameters, i.e. type

W=3.2; H=0.15; T=0.1; model=beamModel(W,H,T)

As result there will be a COMSOL object “model” in the MATLAB Workspace.

You can now use the MATLAB LiveLink mphnavigator(<model name>) function to explore

the model object. It allows you to get an insight into the models properties and methods and

can give you hints how to control or access the model object.

MATLAB users might not be very familiar with the object oriented approach in MATLAB.

This is not needed for getting started with the post processing of the COMSOL model in

MATLAB. However, it is advisable to read the MATLAB Classes and Object-Oriented Pro-

gramming section in the MATLAB Documentation [1] for more detailed information.

Accessing and Postprocessing the COMSOL results in MATLAB

For the following it is recommended to start building a MATLAB script instead of using the

command line. We will now access the displacement data of the Point at (W, T/2) to plot its

4

trajectory. Keep in mind, how it was accomplished using the GUI: at first was defined which

quantity is to be evaluated (displacement u and v of a point) and next where (point on the

beam’s free end). The same sequence of steps applies using a script in MATLAB.

1. Clear all variables from the MATLAB workspace, close all figures and execute the COM-

SOL model with your M-FILE script as previously on the command line.

2. Now we set up a point evaluation

a) Add the command

model.result.numerical.create('pev2', 'EvalPoint ');

to your script. The part model.result.numerical always refers to the numerical

result data of the COMSOL model. The part create(’pev2’, ’EvalPoint’) is

creating the Point Evaluation. This part is equivalent to adding a Point Evaluation

to your model in the COMSOL GUI by right-clicking the Derived Values node from

the Results node in the Model Builder tree. The create-method is requiring two

input strings.

i. The first one (’pev2’ in our case) is the tag of the Point Evaluation. It is the

arbitrary name of the evaluation point in the MATLAB object hierarchy. The

following is probably true in most cases: Whenever in the COMSOL GUI by

right-clicking a node you are able to create more than one entity, i.e. a mesh, plot

group, solver ..., it will have a tag within the MATLAB model object hierarchy.

You can use the tags() method to see tags that are already present in sections

of your model. Type model.result.tags() in the MATLAB command line. If

you have set up the model according to this tutorial it will return something

similar to

ans =

java.lang.String []:

'pg1'

'pg2'

where ’pg1’ and ’pg2’ refer to the default plot groups created by COMSOL.

ii. The second string (’EvalPoint’ in our case) specifies the entity to create. As far

as the authors of this tutorial know, the entity names that need to be passed to

the create function are not documented. For now the best way to find these

names is to make the corresponding modification within the COMSOL GUI,

save to another M-File and compare to the actual model M-File, e.g. by using

the MATLAB editor tool Compare Against.

5

b) Now specify which point of the model corresponds to the Point Evaluation. We

already set up a Cut Point 2D for that while modifying the model within the

COMSOL GUI (as described in the large deformation beam tutorial). Execute

model.result.dataset.tags() in the MATLAB command line. It will return

something like

ans =

java.lang.String []:

'dset1'

'cpt1'

In case you would like to create a new Cut Point in the COMSOL GUI you would

have right-clicked on the Data Sets node from the Results node in the Model Builder

tree.

Execute model.result.dataset(’cpt1’).getType() in the MATLAB command

line. The return will tell you, that ’cpt1’ refers to a Cut Point. Note that we have

just used the tag ’cpt1’ to navigate to a certain entity within the model object.

c) Now we set ’cpt1’ to be the geometrical position for the Point Evaluation. Add this

command to the script:

model.result.numerical('pev2').set('data', 'cpt1');

The set-method allows to modify properties of the entity which can usually be seen

with the mphnavigator or by executing model.result.numerical(’pev2’).properties()

in the MATLAB command line. Actually a lot of the properties can be identified

from the settings tab of an entity in the COMSOL GUI.

3. Add

model.result.numerical('pev2').set('expr', 'u');

to the script to set the expression of interest to be the displacement u (x-direction).

4. Now use the getReal()-method to access the numerical data of the evaluation point.

Add

u=model.result.numerical('pev2').getReal ();

to the script.

5. Repeat the above for the displacement v (y-direction).

6. You are now able to plot the trajectory of the point (W, T/2).

6

In order to do a parameter study simply introduce a loop to the script and loop over the

geometry parameter of interest. For the postprocessing one may use COMSOL commands,

such as mphplot(model,’pg1’), see the LiveLink Documentation [2] for more commands.

Alternatively, one may examine the COMSOL object and access it directly by its methods,

such as .getReal().

Example source code

Now for a parameter study modify the model M-File as follows: function name, parameter in

function head, and parameter in definition (here width W) it should then look like

function out = beamModel(W)

...

model.param.set('F_Lx', ' -3.844[MN]', 'Maximum␣compressive␣load')

;

model.param.set('F_Ly', '1e-3* F_Lx', 'Transverse␣load');

model.param.set('NCL', '0', 'Normalized␣compressive␣load');

model.param.set('W', [num2str(W),'[N]'], 'beam␣width');

...

Now create a new script that invokes the FEM-calculation passing parameters (here width W)

clc; clear;

W=3.2; % this could be set in a loop

model=beamModel(W); % run beam model

% post -process using COMSOL commands (cf. LiveLink Docu)

mphplot(model ,'pg1');

figure;

mphplot(model ,'pg2');

ui=mphinterp(model ,'u','coord',[W;0.005]); % 0.005 is half height

vi=mphinterp(model ,'v','coord',[W;0.005]);

% alternatively mpheval for evaluation at the nodes

% post -process accessing the COMSOL object

model.result.numerical('pev1').set('expr','u');

ue=model.result.numerical('pev1').getReal (); % end point

displacement (x) for each load step

model.result.numerical('pev1').set('expr','v');

ve=model.result.numerical('pev1').getReal (); % end point

displacement (y) for each load step

figure; plot(ue, ve, ui , vi , 'Linewidth ' ,2); % plot path of end

point trajectory

7

There are both variants included: the direct access to the COMSOL object and the access via

a COMSOL command, here mphinterp [2]. Figure 3 shows the resulting plot.

−6 −5 −4 −3 −2 −1 0
−3

−2.5

−2

−1.5

−1

−0.5

0

Figure 3: End point paths for the parameter values from the model library tutorial accessing
the COMSOL object (solid line) and using the mphinterp command (dashed)

Some remarks about export to SimuLink

In COMSOL versions 3.X there was the option to save COMSOL models as SimuLink blocks.

The only thing left in versions 4.X is export of constant state space matrices by right-clicking

the Solver node choosing Other - State Space. There its input and output must be defined.

Global parameters, such as NCL in the large deformation beam model may be used as input

and operators, e.g. an integral operator mod1.intop1(mod1.u), as output. However, to find

the correct names is not intuitive and moreover only linear systems can be described by this

formulation. If you really want to use this feature, see the documentation of mphstate in

the LiveLink Documentation [2]. Note that MIMO systems are created by passing lists as

parameters, e.g.:

M = mphstate (...'output ', {'mod1.ppb1','mod1.ppb2'} ,...);

References

[1] The MathWorks, Inc., MATLAB® Object-Oriented Programming R2011b, September 2011

[2] COMSOL, Inc., LiveLink™ for MATLAB User’s Guide LiveLink™ for MATLAB® User’s

Guide, October 2011

8

	Building the model in COMSOL GUI
	Running the COMSOL model from MATLAB via LiveLink
	Prepare the COMSOL model M-File for a parameter study
	Accessing and Postprocessing the COMSOL results in MATLAB
	Example source code
	Some remarks about export to SimuLink

	References

