
Getting started with the autotools:
a “Hello World” example

dominik.kern@student.tu-freiberg.de

November 3, 2006

Free Software comes as open-source packages, typically requiring com-
piling. According to the GNU-standards [1], the installation process
should consist of three commands:

./configure

make

make install

This article describes the background of these commands and introduces
the creation of such a package utilizing the autotools, particular: auto-
conf and automake.

Contents

1 The Concept of Portability 2

2 Makefiles 2
2.1 The make concept . 2
2.2 A basic example Makefile for the “Hello World” program 3
2.3 An advanced example Makefile for the “Hello World” program 4

3 Software distribution process 4

4 Using the autotools 5
4.1 autoconf only . 6
4.2 autoconf and autoheader . 9
4.3 autoconf and automake . 9
4.4 Processing subdirectories . 10
4.5 Summary of steps to create a portable package 11
4.6 Keywords for further information . 13
4.7 Conclusion . 13

5 Background information 14
5.1 Source code of the “Hello World” example 14
5.2 Library concept . 15

1

1 The Concept of Portability

The advantage of a higher programming language like C is that software developed
on a certain system (instruction set, architecture and operating system) can be
ported to any other system provided that there is a compiler. In contrast software
written in machine-level language (assembly) is bounded to one system. Theoret-
ically must only the source code be copied and compiled. In practice there are
differences that must be worked around such as library and tool dependencies, en-
vironment variables, different directories and system specific restrictions.
Another point of distributing “open source” is the philosophy of free software [2],
which states that software should be free and can be used-and-modified as long the
new version is provided again as free software (freeware).
In order to understand the autotools, it is necessary to know how Makefiles work.
This explanation is sketched out in the next section. Skip it, if you know how to
write a Makefile. The subsequent sections describe the software distribution process
and the application of the autotools in order to build a portable package for a “Hello
World” program.

2 Makefiles

Makefiles control the compilation, installation and deinstallation of a software project.
A one-file-program can be compiled easily from the command line. For bigger
projects it is recommended to use the make-build system [3]. The advantages are
as follows:

• One invocation for several files and parameters.

• The compilation can be reproduced by the Makefile.

• Dependencies between files are automatically resolved, saving compilation time
since only updated files are compiled, while preventing mistakes which can
occur due to forgotten dependencies.

2.1 The make concept

The make concept may initially seem a bit abstract, but it should be clarified by the
following example. A Makefile consists of rules of the form:

<target>:<prerequisites>

<commands>

Be aware that commands are written on separate lines and that tabs are placed in
front of them. According to the coding standards [1] the following standard targets
must be defined:

all Compiles the sources in the source directory without affecting the system

install Installs the compiled files into the system i.e. copying into the system direc-
tories, usually run by the appropriate user, who has the necessary permissions

clean Removes all generated files

2

uninstall Removes the installed files from the system, usually run by the appropriate
user

Further targets might be useful such as check, install-check, distclean and there
can be user defined targets such as intermediate targets. Invoking make without
any parameter attempts to build the first target in the Makefile. Typically the first
target is “all”.
Prerequisites are required files or intermediate targets; they are checked for existence
or executed respectively. If their dependencies can not be resolved, then the target
fails (i.e. it cannot be built).
Each target follows commands, which produce it by compiler/program invocations
or by calls of other targets.
In order to make Makefiles more flexible, it is good practice to define variables at
the beginning of a Makefile for frequently used file and directory names.

2.2 A basic example Makefile for the “Hello World” program

Like object oriented programming, Makefiles utilize their full benefits in big projects.
The following example is only for demonstration. A “Hello World” program is dis-
tributed in three source files: main.cxx, hello.cxx, world.cxx. These files should be
compiled into object files and linked together into an executable. The source code
can be found in the last section (5.1). The Makefile for this task could be as follows:

Makefile for a "Hello World" program

all: compile the sources and create application "helloworld"

clean: delete all object files and the executable

install: copy executable "helloworld" to /usr/local/bin

uninstall: delete executable "helloworld" from /usr/local/bin

NAME=helloworld

CXX=g++

BINDIR=/usr/local/bin

all: $(NAME) # create an executable $(NAME) since it is a prerequisite

clean:

rm -f $(NAME) # delete executable

rm -f hello.o world.o main.o # delete object files

install: $(NAME)

cp $(NAME) $(BINDIR) # copy executable in directory

for user applications (bindir)

uninstall:

rm -f $(BINDIR)/$(NAME) # delete executable from directory

for user applications (bindir)

$(NAME): hello.o world.o main.o

$(CXX) -o $(NAME) hello.o world.o main.o

link object files to executable

3

hello.o: hello.cxx hello.hxx

$(CXX) -c hello.cxx

compile source file to object file

world.o: world.cxx world.hxx

$(CXX) -c world.cxx

compile source file to object file

main.o: main.cxx

$(CXX) -c main.cxx

compile source file to object file

Makefile

2.3 An advanced example Makefile for the “Hello World”
program

Instead of writing a rule for each object file, it would be more effective to write a
general rule for creating object files from source files. This is done using suffix-rules.
Targets and prerequisites can be defined as patterns, e.g. “%.o” for all files with
the suffix “.o”. In order to process files without declaring their names you need
to utilize “automatic variables”. These variables are evaluated by the make build
system for each file name where the rule applies. Very useful automatic variables are
$@ for the target’s file name and $< for the first prerequisite’s name. In the example
Makefile the two rules for building the object files hello.o and world.o would match
the pattern:

Compile all *.cxx files (*.hxx required too) into *.o files:

%.o: %.cxx %.hxx

$(CXX) -c $< -o $@

would result in commands like "g++ -c hello.cxx -o hello.o"

since $< is replaced by the first prerequisite and $@ by

the target name (automatic variables)

Further the list of object files could be stored in a variable.

OBJECTS= hello.o world.o main.o

Such a Makefile is elegant; however, it is static, i.e. it does not adapt to different
systems (e.g. another bindir) and does not check if the g++ compiler even exists.
The next section describes how software is universally distributed to other users.

3 Software distribution process

In order to transfer software fast and easily, it is compressed into archives (e.g.
*.tar.gz). Usually after unpacking, there is a directory which contains the docu-
mentation files, subdirectories containing the source code, and for portability the
configure script and templates like Makefile.in and config.h.in.
Running ./configure examines the system for all the requirements (programs,
libraries, etc.) and converts the templates (*.in) into the final files (Makefile, con-
fig.h,...), which are fitted to the target system. A config.log file is created for

4

debugging. After the successful execution of ./configure, the Makefile is ready to
compile the package by entering make. The compilation “should” work without any
problems, and afterwards, the package can be installed by entering make install.
The division in these three commands is useful, because neither compiling source
code without meeting the requirements nor installing improperly compiled binaries
makes sense. Except for the requirements of the package itself, the target system
only needs a shell interpreter and the make build system [3]. The creation of the
configure-script and the templates (*.in) can be done very efficiently and comfortably
with the autotools which are explained next. Figure 1 illustrates the installation on
the target system and anticipates the use of the autotools.

Makefile (dev.)

Makefile.am

configure.scan

configure.ac

configureMakefile.in

Makefile.in

sourcecode

configure

edit edit

automake autoconf

autoscan

sourcecode

autoheader
config.h.in

config.h.in

./configure

config.hMakefile (target)

program (bin)

make

developer system

target system

copy

Figure 1: Creating and distributing portable software using the autotools

4 Using the autotools

Assuming your source code is done, the procedure for each of the autotools is similar.
An input file needs to be written, and then the according tool is run. The autotools
are a tool-chain, meaning that several tools can be combined or used separately.
The tool-chain concept is powerful; however, you need to get an overview about the
dependencies and where to start. To give an outline for this section, the tools are
introduced step by step. At first it will be described how to use autoconf in order to
generate a configure-script, next using autoheader additionally to have a config.h.in

5

template generated, followed by the addition of automake in order to “automate”
the generation of a Makefile.in template. The next section describes how to apply
the autoconf/automake combination to packages containing subdirectories. Subse-
quent the complete process of creating portable packages is summarized. Finally,
some other useful tools are mentioned briefly to demonstrate further possibilities.
As an example a “Hello World” program uses the following files:
main.cxx, hello.cxx, hello.hxx, world.cxx, world.hxx. It is assumed that the auto-
tools are installed. They are part of many distributions and integrated development
environments (IDE). The latest versions can be downloaded from www.gnu.org.
They require the M4-macro-processor and a Perl-interpreter.

4.1 autoconf only

Autoconf is launched by entering autoconf. It generates the configure script from
the input file configure.ac (deprecated name configure.in). This file contains the
macros (M4) about what to do on the target system. This file is also of relevance
for other autotools. The autoconf package comes with some other useful tools, which
will be included in the following description: autoscan (section 4.1), autoheader (sec-
tion 4.2), autoreconf (section 4.5), and autoupdate (section 4.5). Running autoscan

in the top level directory of the package creates a file configure.scan, a proposal for
configure.ac. For our example it would be something like:

-*- Autoconf -*-

Process this file with autoconf to produce a configure script.

AC_PREREQ(2.59)

AC_INIT(FULL-PACKAGE-NAME, VERSION, BUG-REPORT-ADDRESS)

AC_CONFIG_SRCDIR([world.cxx])

AC_CONFIG_HEADER([config.h])

Checks for programs.

AC_PROG_CXX

Checks for libraries.

Checks for header files.

Checks for typedefs, structures, and compiler characteristics.

Checks for library functions.

AC_CONFIG_FILES([Makefile])

AC_OUTPUT

configure.scan

This file is slightly modified to match our needs and saved as configure.ac. We
enter the package name, version no., comments, and disable unused features:

6

-*- Autoconf -*-

Process this file with autoconf to produce a configure script.

AC_PREREQ(2.59) ## prerequisite autoconf version in order to create

the configure script, older version might fail

due to unknown macros/names

AC_INIT(helloworld, 0.0.1, dev@helloworld.org) # package name and no.

and email

AC_CONFIG_SRCDIR([world.cxx]) ## representative source file

##AC_CONFIG_HEADER([config.h]) ## needed for autoheader, not used yet

Checks for programs.

AC_PROG_CXX ## Check for C++ compiler

Checks for libraries.

Checks for header files.

Checks for typedefs, structures, and compiler characteristics.

Checks for library functions.

AC_CONFIG_FILES([Makefile]) ## Create Makefile

AC_OUTPUT

configure.ac

Further macros could be added to check for certain programs, libraries, and func-
tions, for example:

AC_PROG_RANLIB # checking for ranlib

AC_PROG_F77 # checking for F77 fortran-compiler

AC_CHECK_LIB([my_lib],[main]) # checking for library "my_lib"

containing function "main"

AC_CHECK_FUNCS([floor pow sqrt]) # checking for the floor, power-of

and square-root functions

There is much more to check for. With many macros coincident output variables e.g.
CXX for the C++ compiler found. Macros and output variables are systematically
named. All autoconf macros begin with AC and the next word refines the function
(AC CHECK .. , AC PROG ..). There is an index only for macros and output vari-
ables in the autoconf manual [4]. You can also write your own macros or utilize
general purpose macros such as AC CHECK PROG. Here is an example regarding how
to check for a certain program:

7

AC_CHECK_PROG(MYPROG, [myprog], myprog, no)

if test $MYPROG = no; then

AC_MSG_ERROR([myprog is not installed.])

fi

The parameters for AC CHECK PROG(, , ,) are:

1. Name of the output variable which contains the result

2. Name of the executable to search for

3. Value of the output variable if program was found

4. Value of the output variable if program was not found

The following lines evaluate the check. In case the check was negative (Value of
MYPROG is no), AC MSG ERROR is called. This macro prints the error message and
aborts the ./configure process. An alternative is AC MSG WARN, which prints a
warning message and continues the ./configure process .
Output variables can be used in the Makefile.in template. Running ./configure

on the target system produces the Makefile by substitution of the output variables
in the Makefile.in template. For our “Hello World” program it would look like the
static Makefile in section 2.2 except the two lines which assign the C++ compiler
found and the binary directory to our own Makefile variables:

Makefile template for a "Hello World" program

NAME=helloworld

OBJECTS= hello.o world.o main.o

use ./configure results, .i.e. macro output variables:

CXX=@CXX@

BINDIR=@bindir@

all: $(NAME)

clean:

rm -f $(NAME)

rm -f $(OBJECTS)

install: $(NAME)

cp $(NAME) $(BINDIR)

uninstall:

rm -f $(BINDIR)/$(NAME)

$(NAME): $(OBJECTS)

$(CXX) -o $(NAME) $(OBJECTS)

Compile all *.cxx files (*.hxx required too) into *.o files:

%.o: %.cxx %.hxx

$(CXX) -c $< -o $@

would result in commands like "g++ -c hello.cxx -o hello.o"

since $< is replaced by the first prerequisite and $@ by

the target name (automatic variables)

8

main.o: main.cxx

$(CXX) -c $< -o $@

this rule is listed additionally since there is no prerequisite main.hxx

Makefile.in

CXX is an output variable of the AC CHECK CXX macro and bindir is an output
variable of AC INIT which also detects includedir, srcdir, libdir, and others.
The autoconf output variables inclosed by @ will be substituted by the found values
(e.g. CXX by g++). Our Makefile variables could be named anything e.g. COMPILER,
but it is best to stick to standardized names.

4.2 autoconf and autoheader

You can take advantage of the things ./configure detects in your programs. Includ-
ing config.h enables the use of the ./configure results. The file config.h contains a
bunch of preprocessor definitions for system specific features which are detected by
./configure. In order to enable the generation of config.h from the template, add
the following line to configure.ac:

AC_CONFIG_HEADER([config.h])

In order to create the template file config.h.in, just run autoheader. It is useful to
have a look in the template config.h.in to see what is figured and what the prepro-
cessor definitions are.
For instance you can use PACKAGE STRING in your program. The constant is defined
since AC INIT is in configure.ac. Our “Hello World” program uses it:

#include <config.h> // make configure results available

...

cout<<PACKAGE_STRING; // print Package name and Version no.

main.cxx

4.3 autoconf and automake

This combination is very powerful. You will not only get the configure script gen-
erated but also the template Makefile.in. Automake interacts with autoconf and
cannot be used without it. The file configure.ac must include the line:

AM_INIT_AUTOMAKE

Automake is launched with the command automake and controlled by the input file
Makefile.am. This file contains “what needs to be built from which sources”. Our
“Hello World” is a binary program built from the source files hello.cxx, world.cxx,
and main.cxx:

bin_PROGRAMS=helloworld

helloworld_SOURCES=hello.cxx hello.hxx world.cxx world.hxx main.cxx

Makefile.am

In order to pass flags there can be variables defined such as helloworld CXXFLAGS

for the C++ compiler, helloworld CPPFLAGS for the C preprocessor, or for linking
with libraries there would be variables like helloworld LDADD.

9

4.4 Processing subdirectories

There are two possibilities for processing subdirectories. Two existing packages can
be combined to a nested package. The top packages calls the inner package (assumed
directory name ‘‘SUBDIR1’’) by adding the following lines to the input files in the
top level directory:

configure.ac: AC_CONFIG_SUBDIRS([SUBDIR1])

Makefile.am: SUBDIRS=SUBDIR1

There is a detailed example (“arm/hand”) in the automake manual [5]. This way is
clear since each package can be created separately. Thus the modularity is preserved.
On the other hand several configure scripts will be run, one for each directory, re-
peating previously completed checks, like checking for the C++ compiler repeatedly.
Also the auxiliary scripts such as install-sh will be generated for each directory.
Another possibility is to create one configure script for several directories (e.g. there
is a library which is built first, and then linked with the program). The concept of
libraries is sketched out in section 5.2. Splitting the “Hello World” program into a
static library and a main program would end up in the following structure:

package_directory

|

|--include

| ’--hello.hxx world.hxx

|

|--lib

| |--hello.cxx world.cxx

| ‘--Makefile.am

|

|--src

| |--main.cxx

| ‘--Makefile.am

|

|--configure.ac: ..AC_CONFIG_FILES([lib/Makefile src/Makefile Makefile])..

|--Makefile.am: SUBDIRS=lib src # processed in this order !

‘--README, NEWS, INSTALL, ChangeLog, AUTHORS, COPYING

The configure command must check for all requirements, for the libraries in ./lib
as well as for the program in ./src. If the checks succeed it creates a Makefile in the
top level directory and in each of the subdirectories. Building a library requires an
additional tool, which generates an index to an archive, e.g.: ranlib.

-*- Autoconf -*-

Process this file with autoconf to produce a configure script.

AC_PREREQ(2.59)

AC_INIT(helloworld, 0.0.1, dev@helloworld.org)

AM_INIT_AUTOMAKE ## Automake is used

AC_CONFIG_SRCDIR([src/main.cxx]) ## representative source file

AC_CONFIG_HEADER([config.h]) ## Autoheader is used

10

Checks for programs.

AC_PROG_CXX

AC_PROG_RANLIB ## needed to build a library

Checks for libraries.

Checks for header files.

Checks for typedefs, structures, and compiler characteristics.

Checks for library functions.

creating top level and subdirectory Makefiles:

AC_CONFIG_FILES([Makefile

src/Makefile

lib/Makefile])

AC_OUTPUT

configure.ac (top level)

The top level Makefile is pointing to the subdirectories. The subdirectories are pro-
cessed in the given order:

SUBDIRS=lib src ## processing subdirs in given order

Makefile.am (top level)

In the directory lib a static library is built out of the sources hello.cxx and world.cxx:

noinst_LIBRARIES=libhw.a ## static library which is not to be installed

libhw_a_SOURCES=hello.cxx hello.hxx world.cxx world.hxx

libhw_a_CXXFLAGS=-I../include ## add path to headerfiles

lib/Makefile.am

In the src directory the main program is built and linked with the previously built
static library into one executable program:

bin_PROGRAMS=helloworld

helloworld_SOURCES=main.cxx

helloworld_CXXFLAGS= -I../include ## add path to headerfiles

helloworld_LDADD=../lib/libhw.a ## link with static library

src/Makefile.am

4.5 Summary of steps to create a portable package

The complete process of creating portable packages is summarized in this section.
Assuming the source is done, and there are documentation files according to the
coding standards [1]:

11

README the first look, contains a summary about the content and a reference to
the file INSTALL

INSTALL the installation instructions

COPYING the copying conditions

NEWS all changes to the program concerning the user such as new functions

ChangeLog all changes to the source in order to find bugs quickly

AUTHORS programmers name and contact information

For testing it is enough to run touch NEWS README ChangeLog AUTHORS and have
INSTALL and COPYING automatically added by automake. Before distributing a
package, fill in the correct content!
Starting from the top level directory of the package, the sequence of steps is as
follows:

autoscan (optional) Generates configure.scan, a proposal for configure.ac derived
from the source code

aclocal Places M4 macro definitions needed by autoconf into a single file. The
aclocal command first scans for macro definitions in *.m4 files in its default
directory (/usr/share/aclocal on some systems) and in the file acinclude.m4. It
next scans for macros used in the configure.ac file. It generates an aclocal.m4
file that contains definitions of all M4 macros required by autoconf and a
directory autom4te.cache.

edit configure.ac Adjust the generated proposal configure.scan or write the file
from scratch

autoconf Generates the configure script

autoheader (optional) Generates the template file config.h.in

create Makefile.in Either by hand from the static Makefile or edit Makefile.am and
run automake -a The parameter “a” adds missing files and scripts.

Except autoscan, these steps are repeated after every change of the input files.
In order to “automate” the reconfiguration they are compressed into one powerful
command:
autoreconf -vfi.
It rebuilds configure and templates. The parameters are as follows:

v verbose, to get information about the reconfiguration process

f force, to replace existing files

i install, to copy missing files into the package

With newer versions of autoconf there were changes to the autoconf macro naming
scheme. To “modernize” an old file configure.ac there is the command autoupdate.
It substitutes obsolete macro names to the current names.

12

For further information check the manuals [3] [4] [5]. There are very helpful indices
for macros and variables.
Many packages often still contain the input files (configure.ac Makefile.am). Read
them! Learn from others. Maybe you can fix errors when ./configure or make fails
for downloaded software.

If software projects are under version control, such as CVS or Subversion, there
are no files in the repository, which could be generated automatically. Thus there
are only the input files (configure.ac Makefile.am). In order to organize the calls of
the autotools there is a script typically named autogen.sh. Unfortunaly this name
is similar to the name of an existing software tool for automatic text generation
“autogen”. There is no relation between autogen and autogen.sh.

4.6 Keywords for further information

Now you have learned the basic autotools in order to create a portable package.
There are more useful tools for helping you to “automate” standard procedures in
software development. This section gives some advice for further information. There
is a bunch of additional useful tools in connection with the autotools. Sometimes
it is helpful enough to know that a tool exists. Here are some keywords that might
lead you to a fast solution.

autoqt Checks for QT [6]. This is a frequent task in many applications, particu-
larly with graphical user interface (GUI). There is a macro gw CHECK QT which
checks for QT, detects several parameters such as version no., QTDIR, paths
to uic, moc and provides them as variables. It can be called from configure.ac
presuming the file gwqt.m4 was copied to the autoconf directory. This file is
available from the autoqt-project,
http://autoqt.sourceforge.net

gettext Prepares your programs easily for internationalization (abbreviated “i18n”).
All strings in the source that should be prepared for translation, usually the
output for the user, need to be put in a macro. This macro extracts the strings
to a file (*.pot) which can be translated. Using AM GNU GETTEXT in configure.ac
supports gettext. It evaluates the local language setting and chooses the trans-
lation accordingly,
http://www.gnu.org/software/gettext/gettext.html

kdoc Generates documentation from the source code and its comments,
http://sirtaj.net/projects/kdoc/

libtool Supports programming and distributing of libraries. Run libtoolize on the
developer system to create a shell script named libttool. On the target system
this script manages to provide the dynamic library, it might even simulate a
dynamic library using static libraries,
http://www.gnu.org/software/libtool/

4.7 Conclusion

Using the autotools from scratch is as easy as writing Makefiles. I hope that I have
encouraged you to utilize the autotools for your future projects. At any time your
programs are portable and you can share them with others and in addition the

13

autotools are supported by many integrated development environments (IDE), e.g.
KDEVELOP.
The M4-macro-processor is aged by now, maybe it will be substituted soon, but the
idea will continue. The drawback of alternative approaches such as cmake [7] is that
it needs to be installed on the target system as well.

5 Background information

5.1 Source code of the “Hello World” example

#include "hello.hxx"

#include "world.hxx"

#include "config.h" // make configure results available

int main()

{

hello first_word;

world second_word;

std::cout<<PACKAGE_STRING; /* use the preprocessor definitions

from config.h */

first_word.print();

second_word.print();

return 0;

}

main.cxx

#include <iostream>

#ifndef HELLO_HXX

#define HELLO_HXX

class hello{

public:

void print();

};

#endif

hello.hxx

14

#include "hello.hxx"

void hello::print()

{

std::cout<<" Hello ";

}

hello.cxx

The class “world” (world.hxx, world.cxx) is identical with the class “hello” except
the class name and the output string. All example files can be found at:
http://kern-81.homepage.t-online.de/autotools examples.tgz

5.2 Library concept

Libraries provide external functionality; the linking is done in order to build the
executable. The header files of the libraries are necessary for the compilation, cir-
cumstantiating the preprocessing. They provide the function names and parameter
declarations.

There are two kinds of libraries: static libraries (*.a) and dynamic libraries (*.so).
Static libraries are archived object files. They are merged with the compiled pro-
gram during linking. Static libraries are only needed once for linking. The built
executable contains all the code so there will never be a dependency from a program
to a static library. This make things lucid; however, the programs bulk up.

Dynamic libraries, a.k.a. “shared objects”, are accessed during the run time of
a program. These libraries are usually located in the libdir (e.g. /usr/lib). The
executable contains references instead of merged code. The dependencies from dy-
namic libraries can be found using the command ldd <programfile>. There are
differences in the handling of dynamic libraries from one system to another. Some
systems even do not support dynamic libraries.

References

[1] GNU coding standards, online-manual http://www.gnu.org/prep/standards

[2] Philosophy of the GNU Project http://www.gnu.org/philosophy

[3] GNU make 3.80, online-manual http://www.gnu.org/software/make

[4] GNU autoconf 2.59, online-manual http://www.gnu.org/software/autoconf

[5] GNU automake 1.96, online-manual http://www.gnu.org/software/automake

[6] QT, class library for cross-platform application development
http://www.trolltech.com

[7] CMake, the Cross-platform Make http://www.cmake.org

[8] Matthias Kupfer, interview at “Chemnitzer Linux-Tage 2006”

15

